

CHEP2018 ICHEP2018 SECUL XXXIX INTERNATIONAL CONFERENCE

The LHCb RICH Upgrade Michele Piero Blago on behalf of the LHCb RICH Collaboration

UNIVERSITY OF CAMBRIDGE

The LHCb experiment

UNIVERSITY OF CAMBRIDGE

Magnet

07.07.18

Tracker

RICH 2

M. P. Blago, LHCb Collaboration – The LHCb RICH Upgrade – ICHEP 2018

Muon system

H-CAL

E-CAL

The current LHCb RICH detectors

Particle Identification up to 100 GeV/c by determining Cherenkov angle.

 C_4F_{10} (RICH 1) and CF_4 (RICH 2) gas as **Cherenkov** radiators.

Photon detection using Hybrid **Photon Detectors** (HPDs): solid state detectors with readout electronics integrated inside vacuum tube.

RICH: Ring Imaging Cherenkov Detector.

07.07.18

Magnetic Shield

VELO exit window

Plane Mirror

Upgrade challenges for RICH LO-hardware trigger (1 MHz) replaced Inst. luminosity increases from $4 \times 10^{32} cm^{-2} s^{-1} to$ by software trigger Black: current RICH, Run 2 luminosity $2 \times 10^{33} cm^{-2} s^{-1}$ **Red : current RICH, Run 3 luminosity** (40 MHz). Green: upgraded RICH, Run 3 luminosity

Increased rate requires upgrade of front-end electronics.

UNIVERSITY OF CAMBRIDGE

07.07.18

M. P. Blago, LHCb Collaboration – The LHCb RICH Upgrade – ICHEP 2018

Particle multiplicity requires upgrade of optical system for pattern recognition.

Mechanical changes

to maintain PID performance.

Focal plane and mirror moved back to increase ring size. New spherical mirrors with larger radius of curvature. → Larger gas enclosure. Compact photo-detection system required.

Peak occupancy should remain < 30 %

M. P. Blago, LHCb Collaboration – The LHCb RICH Upgrade – ICHEP 2018

07.07.18

Current RICH 1

Mechanical changes

to maintain PID performance.

Focal plane and mirror moved back to increase ring size. New spherical mirrors with larger radius of curvature. → Larger gas enclosure. Compact photo-detection system required.

Peak occupancy should remain < 30 %

M. P. Blago, LHCb Collaboration – The LHCb RICH Upgrade – ICHEP 2018

07.07.18

Upgraded RICH 1

The elementary cell & read-out

MaPMT R13742

MaPMT R13743

Backboard

Baseboard

regions of RICH 2. Signal propagation:

Cooling bar

07.07.18

Light

- Hamamatsu multi-anode PMTs (MaPMTs): 64 channels, single photon sensitive, QE sensitive in green region, fast, radiation hard, low dark count rate. 1 x 1 in² MaPMTs (R13742) in RICH1 and high-occupancy
- 2 x 2 in² (R13743) in low-occupancy regions of RICH 2. Custom ASIC (CLARO) designed for LHCb RICH.

Photon Detector Module (PDM)

2 digital boards. 4 elementary cells: Hamamatsu MaPMTs $(1x1 in^2 \& 2x2 in^2).$ CLARO read-out chips. Magnetic & electric shielding for RICH 1 MaPMTs

07.07.18

Beam test experiments

Various beam test experiments since 2014 to study opto-electronic chain.

Test set-up in thermally insulated light-tight box. Cherenkov photons generated and focussed in borosilicate radiator.

Cherenkov ring measured using PDM with prototype or pre-production components.

07.07.18

LHCb RICH upgrade in a nutshell

- Increase in luminosity to $2 \times 10^{33} cm^{-2} s^{-1}$ and read-out rate to 40 MHz.
- Entire opto-electronic chain needs to be replaced. Modularisation in elementary cells and photon detector modules.
- Two types of MaPMTs used with CLARO custom ASIC for single-photon detection and fast read-out. Have been completely delivered and are in quality assurance phase.
- Mechanical structure of RICH 1 needs to be modified to decrease photon occupancy. Spherical mirrors and gas enclosure will be exchanged.
- All components of PDM and mechanical structure successfully reviewed for production readiness and tested in beam experiments, inside RICH 2, and in laboratory set-ups.

07.07.18

Backup slides

UNIVERSITYOF CAMBRIDGE

PDM integration in RICH 2

Photon Detector Module (pre-production components)

Top view of PDM installed in RICH 2, synchronised with LHCb clock and trigger.

07.07.18

Cherenkov light from LHCb collisions

Beam test set-up

UNIVERSITY OF CAMBRIDGE

Schematic of photon path in set-up (top view) Focal plane Mirror coating MaPMTs

M. P. Blago, LHCb Collaboration – The LHCb RICH Upgrade – ICHEP 2018

13

Photon detector assembly

07.07.18

Hamamatsu MaPMTs

Negligible cross talk and dark count rate. Single photon sensitivity for wavelengths between 200 nm and 600 nm.

MBRIDGE

07.07.18

8 x 8 channel multi-anode photomultiplier tubes. 3100 (incl. spares) 1 x 1 in² version for RICH 1 and high-occupancy regions of RICH 2. 450 (incl. spares) 2 x 2 in² version for lowoccupancy regions of RICH2.

MaPMT quality assurance

Dark count rate vs. gain

UNIVERSITY OF CAMBRIDGE

07.07.18

Quantum efficiency

M. P. Blago, LHCb Collaboration – The LHCb RICH Upgrade – ICHEP 2018

Silvia Gambetta et al.

Quantum efficiency

07.07.18

Reduces chromatic uncertainty.

Resolution & yield

Expected improvements of Cherenkov angle uncertainties and photon yield

	Chromatic uncertainty [mrad]	Emission point uncertainty [mrad]	Pixel uncertainty [mrad]	Total uncertaint (resolution) [mrad]
Current RICH 1	0.84	0.76	1.04	1.60
Upgraded RICH 1	0.57	0.36	0.45	0.78
Current RICH 2	0.48	0.27	0.35	0.65
Upgraded RICH 2	0.31	0.26	0.20	0.45

VIVERSITY OF

CAMBRIDGE

07.07.18

Elementary cell shielding

Stray magnetic field up to 25 G in RICH 1. Longitudinal field degrades detection efficiency and gain.

-B=0G---B = 30 G shielding.

Shielding additionally provides 1kV HVinsulation.

200

ADC value

07.07.18

150

Recovered by mu-metal

M. P. Blago, LHCb Collaboration – The LHCb RICH Upgrade – ICHEP 2018

Didier Piedigrossi et al.

19

- Low power consumption
- Single photon counting at 40 MHz
- 8 channel custom ASIC (CMOS)

CLARO read-out chip

Radiation tolerant • Settable gain (4 options) and threshold (64 options)

07.07.18

M. P. Blago, LHCb Collaboration – The LHCb RICH Upgrade – ICHEP 2018

20

Current detection system

Occupancy and PID performance

Occupancy for $L_{inst} = 2 \times 10^{33} cm^{-2} s^{-1}$

Upgraded detection system

07.07.18

M. P. Blago, LHCb Collaboration – The LHCb RICH Upgrade – ICHEP 2018

Kaon ID Black: current RICH, Run 2 luminosity **Red** : current RICH, Run 3 luminosity Green: upgraded RICH, Run 3 luminosity 1.16162 75 80 85 95 90 100 Kaon ID Efficiency / %

Sajan Easo